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The properties of the complete CI-matrix in a VB-formalism based on orthogonal(ized) orbitals 
allow for a direct demonstration of the difference between alternant and non-alternant systems, 
including the radical ions, carbenions and carbanions derived from them. 
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1. Introduction 

After its introduction by McWeeny [1-3],  the valence-bond method based 
on orthogonal(ized) orbitals has been used i.a. by Amos [-4] and by van der Lugt 
and Oosterhoff [5]. The extreme simplicity of the energy matrix in this formalism 
has been noted, but this advantage can only be exploited if the ZDO-approxima- 
tion is employed and a full CI-treatment is performed. 

Here we propose to use the structural characteristics of the full CI-matrix 
based on all possible Slater-determinants of a specified Sz eigenvalue, that can 
be formed from the available orbitats, to elucidate in a direct way the consequences 
of the difference between alternant and non-alternant systems. Although proofs 
have been given previously, notably by Weyland [-6-] and McLachlan [7], the 
attractive feature of the VB-analysis is its demonstration that the signs of matrix 
elements control the situation. This may help to explain the fact that the alternant 
properties, which on first sight seem to be dependent on a particular approxima- 
tion, are to a remarkable degree verified experimentally. 

Although Cooper [-8] has shown that the VB-method based on orthogonal 
(ized) orbitals can be used to prove the correspondence between the positive and 
negative radical ions of alternant hydrocarbons, his objective was different from 
ours. His analysis was directed at the integral approximations and the modifica- 
tions necessary to obtain different results for the positive and negative ions. We 
wanted to show in a direct way the consequences of the structural difference 
between alternant and non-alternant hydrocarbons. 

2. Construction of the Slater Determinants 

We consider N atomic centers, each contributing one atomic orbital. Re- 
garding the number of electrons we will investigate two cases: N -  a electrons 
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and N + a electrons. The eigenvalues of S z will be denoted by _+ s, and we are 
lead to: 

N - a  N - a  
Case I: ~ + s e-spins and 2 s fl-spins. 

CaseII :  N + a , N + a - - 2  s e-spins ano ~ -  + s //-spins. 

The number of possible Slater determinants becomes [9] : 

N - a  S = s + s .  
+s.  2 2 / 

The orbitals in the Slater determinants will be ordered according to increasing 
index and the e-spinorbitals preceding the//-spinorbitals. The order of the de- 
terminants follows from taking successive combinations for the //-spinorbitals 
for each possible combination of the e-spinorbitals. 
It follows from inspection of Table 1 that the first determinant of Case I is com- 
plemented by the last determinant of Case II in such a way that the two deter- 
minants have no orbitals in common and together fully exhaust the available 
orbital basis, once in the e-spin sets and once in the//-spinsets. This will be true 
for each pair of determinants going down the table for Case I and going up for 
Case II. We will consider the matrix elements between these sets of Slater deter- 
minants (within Cases I and II) in the next section. 

3. Matrix Elements 

If two determinants have the property that they contain mutually exclusive 
sets of orbitals they will describe exactly opposite charge distributions. Taking 
the diagonal elements of one pair of such determinants (preferably the least polar 
ones) as reference we will assume that each other pair will have an equal spacing 
in energy from these reference diagonal elements. This means then that the diago- 
nal elements in Case I going down in Table I and in Case II going up will all be 
equally spaced. 

Invoking the ZDO approximation we immediately verify that the off-diagonal 
elements will either be zero or equal to a single one-electron integral (fl) in the 
case of one spinorbital difference. When considering these matrix elements we 
need only look at either the e-spinset or the fl-spinset because the other set must 
be identical in the two determinants whose matrix element we are calculating. 

CaseI :  a b c . . . i . . . C ) . . . s t u  with a b c . . . C ) . . . j . . . s t u .  
j i 

The one-spinorbital difference is in the orbitals i and j ;  if we assume p orbitals 
present between i and j the matrix element will be ( -  1) p§ fllj. 

Case II: a ' b ' c ' . . .  0 . . . j . . . s ' t ' u '  with a ' b ' c ' . . ,  i . . .  0 . . . s ' t ' u ' .  
i J 

We now meet two possibilities; the total number of orbitals between i and j 
may be 2r or 2 r +  1 and therefore the matrix element is either (-1)2r-P+l//ij  
or ( - l )  zr- p§ 2 flij. Thus the matrix elements between two determinants in Case I 
and between their complementary determinants in Case II are either equal or 
equal with opposite sign. Summarizing, we have obtained: 
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a) 2r orbitals between i and j;  this means the orbital indices o f / a n d j  are of opposite 
parity, one is even and the other odd: 

Matrixelement (I) = Matrixelement (II). 

b) 21" + 1 orbitals between i and j;  this means the orbital indices of i and j are of 
equal parity, both even or both odd: 

Matrixelement (I) = - Matrixelement (II). 

From the foregoing it will be ciear that for an alternant system (only odd-even 
interactions) the matrices for Cases I and II are equal but for a constant difference 
in the diagonal elements. In a non-alternant system we have at least one odd-odd 
or even-even interaction and we get an off-diagonal sign difference. 

4. Exemplification of Cases I and H 

(1) a ~ 0: Case I represents a positive ion and Case II the corresponding negative 
ion. If the parent molecule was alternant we obtain equal energy differences 
for all the states of the two systems, exactly opposite charge distributions and 
equal spindistributions if the number of electrons is odd. 

(2) a = 0: The two cases become identical and we have a neutral system. If this 
system is alternant the energy matrix will be symmetric around the secondary 
diagonal. The result will be a uniform charge distribution and the occurrence 
of states in pairs form the complementary determinants. The odd-odd and 
even-even interactions present in a non-alternant molecule will manifest 
themselves in matrixelements with opposite sign on positions symmetrical 
with respect to the secondary diagonal and special properties will disappear. 

5. Conclusion 

Once again [10] a valence-bond analysis shows the signproducing property 
characteristic of permutations. In this case it is the so-called "line up" permutation 
that controls the situation. The elegant - admittedly qualitative - way in which 
valence-bond arguments can be made operative, leads us to believe that further 
exploration of the method, possibly in different versions, is fully warranted. 
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